Becoming more than an old gasbag: Climate chemistry on YouTube, cryogenic energy storage, and community renewable energy

All gas and bulls**t. That’s me – or so some of my critics think. And this time they’re right, although not in the way they think they are.

Over recent months I’ve been delighted to work with the enormously talented Adam Levy, better known as ClimateAdam, on a couple of videos. They deal with just why greenhouse gases trap energy in the atmosphere, a subject that has come up when I’m discussing climate with friends. It’s hard to understand how gases that are present in the atmosphere in such tiny amounts compared to oxygen and nitrogen can be so powerful. But it’s all to do with molecules absorbing light energy in a way that makes their atoms vibrate, which is also how substances get their colours.

I know this because it came up in my first year undergraduate chemistry course at the University of Southampton. My amazing lecturer, Martin Grossel, demonstrated the principles by standing on a stool with balloons in each hand, representing atoms. He then wiggled his arms to represent the vibrations in question. This is the kind of thing that just doesn’t come across in writing. So when I bumped into Adam at the Association of British Science Writers’ annual award ceremony last year, I suggested he put something like this into some of his videos. He then used the opportunity to apply for some science communication funding from the Royal Society of Chemistry. Having secured that cash, through the course of 2018 we’ve been working together on the script, and you can watch the final products here and here.

These videos also show why carbon emissions are not the same as carbon dioxide emissions – the difference is two oxygen atoms – a common confusion that jangles my chemical sensibility. Apologies in advance if I ever annoyingly pull you up on this.

That’s the gas, but it’s definitely not the bulls**t. That comes in an article I recently had published on Physics World that talks about the exciting prospects for gases in energy storage. Cryogenically cooling and condensing gases – such as the air around us – when renewable energy is abundant is a potential means for storage. What’s more, you can use the cooling for refrigeration, and the liquid gases are portable.

But the bulls**t is what excites me the most. As our second video above shows, methane is a potent greenhouse gas and its emissions from farming – including from cows belching and pooing – are hard to reduce. So one of the companies I wrote about is looking to store the manure, collect the methane and cryogenically store it. Then,  farmers can burn it when energy is needed and feed electricity into the grid, displacing natural gas, for example. But like the other gases, the liquid methane is portable and could be used to run trucks that currently use diesel, and eliminate the horrible pollution that brings. Or it could be used to supply the many people in rural areas that – surprisingly to many urbanites – have no access to the gas grid.

I have become aware of the limited access to the gas grid since becoming a director of Exeter Community Energy earlier this year, supporting renewable electricity generation and energy efficiency. In case you hadn’t noticed, the climate issue is more pressing than ever. If you’re looking for something practical to do on this front, seeking out your local community renewable energy group is one excellent way to make a difference.