chemistry – Exeter Empirical

Setting the metallic hydrogen record straight

Eugene Wigner (above) and Hillard Bell Huntington predicted that hydrogen could take on a metallic form.

see Eugene Wigner (above) and Hillard Bell Huntington predicted that hydrogen could take on a metallic form.

how to buy priligy In 1935, two scientists working at Princeton University in the US made a prediction that chemists and physicists are still striving to make a reality. Writing in the Journal of Chemical Physics, Eugene Wigner and Hillard Bell Huntington foresaw a strange-sounding form of hydrogen. Rather than its familiar molecular form, H2, with two atoms joined by a covalent bond, at high pressures hydrogen might switch to a metallic lattice of individual atoms. In researching my feature on high-pressure chemistry for the August 2016 issue of Chemistry World, this prediction came up regularly. Natalia Dubrovinskaia from the University of Bayreuth, Germany called it a point of honour, ‘like Fermat’s Last Theorem was for mathematicians’. That’s in part because, on top of the original predictions, later calculations suggested that metallic hydrogen should become a superconductor with relatively little cooling.

Today, researchers have claimed that they’ve reached this goal at pressures of around 490GPa. Yet while Wigner and Huntington are regularly cited in this work, their prediction doesn’t get the respect it deserves. Or at least that’s what Artem R. Oganov, from Stony Brook University in New York, US, and the Skolkovo Institute of Science and Technology in Moscow, Russia, felt.  Oganov discussed the magnitude of the 1935 metallic hydrogen achievement with me in detail during our interview for my feature. He told the story so well, it deserves to be shared – and so we’re sharing it here. Oganov starts by explaining how great an achievement their paper was.

‘Wigner and Huntington used Wigner’s method for computing the electronic structure of solids, the classical cell method. It’s very approximate, one has to admit. It’s a very crude quantum mechanical method, but for that time, 1935, this was an absolute breakthrough. This was just a few years after the formulation of Schrodinger’s equation, before people even had computers. It’s a real tour-de-force. Now we look at that and smile, respectfully, at least I do.’ […]